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and ANOs seem to be evenly distributed in the ciliary layer. 
Local uncaging of cytoplasmic-caged compounds with 
nano-scale UV-laser stimulation showed that newt olfactory 
neurons respond to stimuli at any point of the cilia (Takeuchi 
and Kurahashi 2008), showing that olfactory transduction 
channels are broadly distributed along the cilia. An even 
distribution of signals elicited by a laser beam with a diam-
eter in the micrometer range as described by Takeuchi and 
Kurahashi is consistent with a clustered distribution of 3–5 
patches/�m 2 revealed by STED analysis.

ANO6 could be part of the ciliary signal transduction 
cascade

Domain diameters assessed by 3 different antibodies were 
similar. Given the similarities in CNGA2, ANO2, and 
ANO6 distribution, this finding indicates that ANO6 could 
also be part of the olfactory signal transduction cascade. It is 
unclear whether all members of the anoctamin family form 
Ca2+-activated Cl− channels and reports on ANO6 function 

as a plasma membrane Ca2+-activated Cl− channel are incon-
sistent (Schreiber et al. 2010; Suzuki et al. 2010; Tian et al. 
2012). We show here that ANO6, similar to ANO2, is local-
ized at the membranes of both heterologous cells and at 
olfactory cilia. Moreover, our electrophysiological data 
confirm other studies that describe ANO6 as Ca2+-activated 
Cl− channel (Kmit et al. 2013; Martins et al. 2011), adding 
another potentially contributing component to the elusive 
olfactory Ca2+-activated Cl− channel.

Physiological relevance of anoctamin oligomerization

Several studies show a homodimerization of ANO1 (Fallah 
et al. 2011; Sheridan et al. 2011; Tien et al. 2013). In general, 
members of the anoctamin family share a putative homodi-
meric architecture facilitated by their cytoplasmic N-termini, 
which is important for channel assembly. Amino acid sub-
stitutions in the dimerization domain affect functional 
expression of ANO1, indicating a critical role of channel 
dimerization in subunit assembly (Tien et al. 2013). Using 

Figure 7  Co-localization of ANO2 and ANO6 in olfactory cilia. (A) High-magnification confocal and STED images of olfactory cilia stained for ANO2 
(cyan) and ANO6 (magenta). Position of the dendritic knob is marked by a punctate line. Arrows point to spots showing closed apposition of spots. (B) 
High-magnification confocal and STED images of olfactory cilia stained for CNGA4 (cyan) and CNGA2 (magenta). Scale bars = 1 µm (anoctamins); 500 nm 
(CNG channel). (C) Western blot of membrane fractions from olfactory epithelium membrane show ANO2 and ANO6 proteins in potentially dimeric form.
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BRET assays, we show that ANO2 and ANO6 are capable 
of forming homo-oligomers in HEK293T cells. This is con-
sistent with a recent study showing coimmunoprecipitation 
of both proteins (Tien et al. 2013). We not only found homo-
meric interaction of ANO2 and ANO6, respectively, but 
also identified heteromeric interactions between ANO2 and 
ANO6. These heteromeric interaction has not been found by 
immunoprecipitation (Tien et al. 2013), which could reflect 
the differences between both types of assays. Because we 
found both proteins in the OSN cilia and because they local-
ize to the same microdomains, we assume that interaction 
could also occur in olfactory cilia. This hetero-oligomeriza-
tion likely has physiological relevance because co-expression 
of both recombinant channels leads to markedly increased 
chloride current densities. Another parameter that differs in 
cells expressing recombinant ANO2 alone versus cells co-
expressing ANO2 and ANO6 is the channels’ apparent Ca2+ 
sensitivity.

In summary, we show here that ANO6 is localized to micro-
domains in olfactory cilia. Hetero-oligomerization with 
ANO2 influences the physiological properties of ANO2, 
indicating that ANO6 plays a role in olfactory signal trans-
duction. Our results indicate that the native Ca2+-activated 
Cl− channels in olfactory neurons may be heteromers com-
posed of several anoctamin subtypes.

Supplementary material

Supplementary material can be found at http://www.chemse.
oxfordjournals.org/
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